direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×C42, Dic3○C42, (C4×C12)⋊8C2, C12⋊5(C2×C4), C3⋊1(C2×C42), C4○(C4×Dic3), D6.7(C2×C4), (C2×C4).95D6, Dic3⋊5(C2×C4), C6.2(C22×C4), C42○(C2×Dic3), C42○(C4×Dic3), (C4×Dic3)⋊17C2, (C2×C6).12C23, C22.9(C22×S3), (C2×C12).109C22, (C22×S3).32C22, (C2×Dic3).45C22, C2.1(S3×C2×C4), (S3×C2×C4).11C2, SmallGroup(96,78)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C42 |
Generators and relations for S3×C42
G = < a,b,c,d | a4=b4=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 186 in 108 conjugacy classes, 69 normal (8 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C23, Dic3, C12, D6, C2×C6, C42, C42, C22×C4, C4×S3, C2×Dic3, C2×C12, C22×S3, C2×C42, C4×Dic3, C4×C12, S3×C2×C4, S3×C42
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C42, C22×C4, C4×S3, C22×S3, C2×C42, S3×C2×C4, S3×C42
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 15 29 21)(2 16 30 22)(3 13 31 23)(4 14 32 24)(5 25 43 35)(6 26 44 36)(7 27 41 33)(8 28 42 34)(9 47 17 39)(10 48 18 40)(11 45 19 37)(12 46 20 38)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 45 27)(14 46 28)(15 47 25)(16 48 26)(17 43 29)(18 44 30)(19 41 31)(20 42 32)(21 39 35)(22 40 36)(23 37 33)(24 38 34)
(1 31)(2 32)(3 29)(4 30)(5 19)(6 20)(7 17)(8 18)(9 41)(10 42)(11 43)(12 44)(13 21)(14 22)(15 23)(16 24)(25 37)(26 38)(27 39)(28 40)(33 47)(34 48)(35 45)(36 46)
G:=sub<Sym(48)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,15,29,21)(2,16,30,22)(3,13,31,23)(4,14,32,24)(5,25,43,35)(6,26,44,36)(7,27,41,33)(8,28,42,34)(9,47,17,39)(10,48,18,40)(11,45,19,37)(12,46,20,38), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,45,27)(14,46,28)(15,47,25)(16,48,26)(17,43,29)(18,44,30)(19,41,31)(20,42,32)(21,39,35)(22,40,36)(23,37,33)(24,38,34), (1,31)(2,32)(3,29)(4,30)(5,19)(6,20)(7,17)(8,18)(9,41)(10,42)(11,43)(12,44)(13,21)(14,22)(15,23)(16,24)(25,37)(26,38)(27,39)(28,40)(33,47)(34,48)(35,45)(36,46)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,15,29,21)(2,16,30,22)(3,13,31,23)(4,14,32,24)(5,25,43,35)(6,26,44,36)(7,27,41,33)(8,28,42,34)(9,47,17,39)(10,48,18,40)(11,45,19,37)(12,46,20,38), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,45,27)(14,46,28)(15,47,25)(16,48,26)(17,43,29)(18,44,30)(19,41,31)(20,42,32)(21,39,35)(22,40,36)(23,37,33)(24,38,34), (1,31)(2,32)(3,29)(4,30)(5,19)(6,20)(7,17)(8,18)(9,41)(10,42)(11,43)(12,44)(13,21)(14,22)(15,23)(16,24)(25,37)(26,38)(27,39)(28,40)(33,47)(34,48)(35,45)(36,46) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,15,29,21),(2,16,30,22),(3,13,31,23),(4,14,32,24),(5,25,43,35),(6,26,44,36),(7,27,41,33),(8,28,42,34),(9,47,17,39),(10,48,18,40),(11,45,19,37),(12,46,20,38)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,45,27),(14,46,28),(15,47,25),(16,48,26),(17,43,29),(18,44,30),(19,41,31),(20,42,32),(21,39,35),(22,40,36),(23,37,33),(24,38,34)], [(1,31),(2,32),(3,29),(4,30),(5,19),(6,20),(7,17),(8,18),(9,41),(10,42),(11,43),(12,44),(13,21),(14,22),(15,23),(16,24),(25,37),(26,38),(27,39),(28,40),(33,47),(34,48),(35,45),(36,46)]])
S3×C42 is a maximal subgroup of
C42.282D6 C42.182D6 Dic3⋊5M4(2) C42.200D6 C42.202D6 C12⋊M4(2) C42.188D6 C42.93D6 C42.228D6 C42.229D6 C42.232D6 C42.131D6 C42.233D6 C42.234D6 C42.236D6 C42.237D6 C42.189D6 C42.238D6 C42.240D6 C42.241D6
S3×C42 is a maximal quotient of
Dic3.5C42 Dic3⋊C42 D6⋊C42 D6.C42 Dic3⋊5M4(2) D6.4C42
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | ··· | 4L | 4M | ··· | 4X | 6A | 6B | 6C | 12A | ··· | 12L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 1 | ··· | 1 | 3 | ··· | 3 | 2 | 2 | 2 | 2 | ··· | 2 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C4 | S3 | D6 | C4×S3 |
kernel | S3×C42 | C4×Dic3 | C4×C12 | S3×C2×C4 | C4×S3 | C42 | C2×C4 | C4 |
# reps | 1 | 3 | 1 | 3 | 24 | 1 | 3 | 12 |
Matrix representation of S3×C42 ►in GL3(𝔽13) generated by
8 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 5 | 0 |
0 | 0 | 5 |
1 | 0 | 0 |
0 | 12 | 12 |
0 | 1 | 0 |
1 | 0 | 0 |
0 | 12 | 0 |
0 | 1 | 1 |
G:=sub<GL(3,GF(13))| [8,0,0,0,1,0,0,0,1],[1,0,0,0,5,0,0,0,5],[1,0,0,0,12,1,0,12,0],[1,0,0,0,12,1,0,0,1] >;
S3×C42 in GAP, Magma, Sage, TeX
S_3\times C_4^2
% in TeX
G:=Group("S3xC4^2");
// GroupNames label
G:=SmallGroup(96,78);
// by ID
G=gap.SmallGroup(96,78);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,50,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations